skip to main content


Search for: All records

Creators/Authors contains: "Paruch, Patrycja"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The wealth of properties in functional materials at the nanoscale has attracted tremendous interest over the last decades, spurring the development of ever more precise and ingenious characterization techniques. In ferroelectrics, for instance, scanning probe microscopy based techniques have been used in conjunction with advanced optical methods to probe the structure and properties of nanoscale domain walls, revealing complex behaviours such as chirality, electronic conduction or localised modulation of mechanical response. However, due to the different nature of the characterization methods, only limited and indirect correlation has been achieved between them, even when the same spatial areas were probed. Here, we propose a fast and unbiased analysis method for heterogeneous spatial data sets, enabling quantitative correlative multi-technique studies of functional materials. The method, based on a combination of data stacking, distortion correction, and machine learning, enables a precise mesoscale analysis. When applied to a data set containing scanning probe microscopy piezoresponse and second harmonic generation polarimetry measurements, our workflow reveals behaviours that could not be seen by usual manual analysis, and the origin of which is only explainable by using the quantitative correlation between the two data sets.

     
    more » « less
  2. null (Ed.)
  3. Abstract

    Deterministic control of the intrinsic polarization state of ferroelectric thin films is essential for device applications. Independently of the well‐established role of electrostatic boundary conditions and epitaxial strain, the importance of growth temperature as a tool to stabilize a target polarization state during thin film growth is shown here. Full control of the intrinsic polarization orientation of PbTiO3thin films is demonstrated—from monodomain up, through polydomain, to monodomain down as imaged by piezoresponse force microscopy—using changes in the film growth temperature. X‐ray diffraction and scanning transmission electron microscopy reveal a variation ofc‐axis related to out‐of‐plane strain gradients. These measurements, supported by Ginzburg–Landau–Devonshire free energy calculations and Rutherford backscattering spectroscopy, point to a defect mediated polarization gradient initiated by a temperature dependent effective built‐in field during growth, allowing polarization control not only under specific growth conditions, but ex‐situ, for subsequent processing and device applications.

     
    more » « less