Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Defects have a significant influence on the polarization and electromechanical properties of ferroelectric materials. Statistically, they can be seen as random pinning centers acting on an elastic manifold, slowing domain-wall propagation and raising the energy required to switch polarization. Here we show that the “dressing” of defects can lead to unprecedented control of domain-wall dynamics. We engineer defects of two different dimensionalities in ferroelectric oxide thin films—point defects externally induced via bombardment, and extended quasi-one-dimensional domains formed in response to internal strains. The domains act as extended strong pinning sites (as expected) imposing highly localized directional constraints. Surprisingly, the induced point defects in the bombarded samples orient and align to impose further directional pinning, screening the effect of domains. This defect interplay produces more uniform and predictable domain-wall dynamics. Such engineered interactions between defects are crucial for advancements in ferroelectric devices. Published by the American Physical Society2024more » « less
-
Abstract Ferroelectrics, due to their polar nature and reversible switching, can be used to dynamically control surface chemistry for catalysis, chemical switching, and other applications such as water splitting. However, this is a complex phenomenon where ferroelectric domain orientation and switching are intimately linked to surface charges. In this work, the temperature‐induced domain behavior of ferroelectric‐ferroelastic domains in free‐standing BaTiO3films under different gas environments, including vacuum and oxygen‐rich, is studied by in situ scanning transmission electron microscopy (STEM). An automated pathway to statistically disentangle and detect domain structure transformations using deep autoencoders, providing a pathway towards real‐time analysis is also established. These results show a clear difference in the temperature at which phase transition occurs and the domain behavior between various environments, with a peculiar domain reconfiguration at low temperatures, from a‐c to a‐a at ≈60 °C. The vacuum environment exhibits a rich domain structure, while under the oxidizing environment, the domain structure is largely suppressed. The direct visualization provided by in situ gas and heating STEM allows to investigate the influence of external variables such as gas, pressure, and temperature, on oxide surfaces in a dynamic manner, providing invaluable insights into the intricate surface‐screening mechanisms in ferroelectrics.more » « less
-
Abstract Deterministic control of the intrinsic polarization state of ferroelectric thin films is essential for device applications. Independently of the well‐established role of electrostatic boundary conditions and epitaxial strain, the importance of growth temperature as a tool to stabilize a target polarization state during thin film growth is shown here. Full control of the intrinsic polarization orientation of PbTiO3thin films is demonstrated—from monodomain up, through polydomain, to monodomain down as imaged by piezoresponse force microscopy—using changes in the film growth temperature. X‐ray diffraction and scanning transmission electron microscopy reveal a variation ofc‐axis related to out‐of‐plane strain gradients. These measurements, supported by Ginzburg–Landau–Devonshire free energy calculations and Rutherford backscattering spectroscopy, point to a defect mediated polarization gradient initiated by a temperature dependent effective built‐in field during growth, allowing polarization control not only under specific growth conditions, but ex‐situ, for subsequent processing and device applications.more » « less
An official website of the United States government
